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Abstract

In an earlier report (University of Maryland, Computer

Science Center, TR-158, June 1971) the authors presented a

new algorithmic language, GRAAL, for describing and implement-

ing graph algorithms as they arise in applications. Tn its

original form GRAAL was defined as an extension of ALGOL 60

(Revised). In this paper, a FORTRAN-based version of the

language, called FGRAAL, is discussed. The paper begins with

a brief review of the set theoretical foundation of the basic

language; then the FGRAAL grammar is summarized, followed by

five examples of FGRAAL subroutines. One of these represents

a new algorithm for finding strong components of a digraph.
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GRAAL - A Gra tai Algorithmic Language 1)

Werner C. Rheinholdt, Victor R. Basili, Charles K. Mesztenyi

Computer Science Center, University of Maryland

k
1.	 Introduction

The authors recently developed a new algorithmic language,
GRAAL, for describing and implementing graph algorithms as they
arise in applications (s p e Rheinboldt, Basili, Mesztenyi (1971A)).
These algorithms involve a wide variety of graphs of different
types and complexity, such as highly structured graphs with
multiple arcs and self loops and with functions defined over the
nodes and arcs, or very large, sparse graphs in which only the
adjacency relations between the nodes are of interest. One of
the design objectives of GRAAL was to allow for this wide range
of possibilities without degrading overly the efficient imple-
mentation and execution of any specific class of algorithms. A
second objective relates to the general need for a language which
facilitates the design and communication of graph algorithms
independent of a computer. In line with this, the aim was to
ensure a concise and clear description of such algorithms in
terms of data objects and operations natural to graph theory and
as free as possible from strictly technical programming require-
ments.

During recent years several graph algorithmic languages have
been proposed, and a brief survey of these efforts can be found
in the authors' cited article. The objectives of these languages
and their design characteristics differ largely from those of
GRAAL.

The design of GRAAL has been based on a set algebraic model
of graph theory which defines the graph structure in terms of

1) This work was supported in part by NSF Grant GJ-1067 and .NASA
Grant NGI.-21-002-008.
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morphi sms between certain set algebraic structures over the node
set and arc set.	 GRAAL is a modular language in the sense that
the user specifies which of these mappings are available for any
graph.	 This allows for considerable flexibility in the selection
of the storage representation for different graph structures and
is one of the means of meeting the first objective of the language.

In its original form CRAAL has been defined as an extension
of ALGOL 60 (Revised).	 In this article we present a MZTRAN-based
version of the language,	 called FGRAAL.	 Implementation of this
extension of FORTRAN is presently under way.	 In Section 2 below
we discuss briefly the set theoretic foundation of GRAAL, which
also constitutes a definition of the semantics of the principal
graph operations under the language. 	 Then in Section 3 the
grammar of FGRAAL is summarized and, 	 finally, Section 4 presents
several examples of FGRAAL subroutines relating generally to the
principal topic of this Symposium.

2.	 Set Algebraic Basis of GRAAI.

In this section,	 capital letters X,S,	 etc.,	 stand	 for finite
sets,	 and besides the standard set operations of union 	 ((J),
intersection (r1),	 and difference	 (-),	 the symmetric sum (A) will
be used.	 For any set	 X	 the cardinality is denoted by 1X11
P(X)	 is	 its power set,	 and

Pk (X)	 _	 { S E P(X) I	 ;SJ	 =	 0,	 k	 =	 0,1,...,JXJ.

It is well-known that under union,	 intersection, and complementa-
tion (in X), P(X)	 is a free Boolean algebra with the members of
P 1 (X)	 as generators.	 To obtain a different algebraic structure,
let GF(2) be the binary Calois field with the integers 0,1 as
elements.	 Then P(X) becomes a vector space over GF(2)	 if the
symmetric sum is used as addition and the scalar product is de-
fined by XS = 0 for X = 0,	 (0 the empty set),	 and XS = S for

= 1.	 The elements of P 1 (X)	 now form a basis.

For any X,Y we denote by B(X,Y) 	 the class of all morphisms

^:P(X) ' PM between the Boolean algebras P(X),P(Y). 	 Any
^ E B(X,Y)	 is uniquely characterized by the image sets
^fx}	 E P(Y)	 of	 the generators	 {x} E P 1 (X),	 and

^S = U'^fx},	 YS E P(X) .
xES

Analogously, we define L(X,Y) as the class of all linear mappings
V:P(X) a PM between the vector spaces P(X) and P(Y). 	 As before,
any ,	 E I.(X,Y)	 is uniquely determined by the specification of
^fx} E PM	 for all basis elements {x) E P 1 (X), and we have

i
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AS - Atfx}, V S E P(h) .
xES

If G is a graph with node set V and arc set A, the
elements of P(V) and P(A) constitu-.e the basic data objects for
all operations on G under GR/iAL, and the structure of G is
given by certain Boolean or linear mappings between the two power
sets.

We define an undirected pseudograph as a triple G - (V,A,(^)

	

'	 consisting of a node set V, an arc set A, and an incidence
operator I' with the properties

(i) It E B(A,V), (ii) ^ {a} e P 1 (V) u P2 (V), d a E A.

We speak of a multigraph if always 1 1^(a}I = 2, and of a graph if,
In addition, the restricted mapping (P:P1(A) - ► P 2 (V) is injective.
The other graph operators, presently available in GRAAL, can then
be defined as follows (always with v E V, a E A):

	

'	 star op.	 a E B(V,A), Q{v} = {aEAIvEV a)},

boundary op.	 a E I.(A,V), a{a} = (JCa}I- 1)4){ a},

	

A	 co-boundary op. d E L(V,A), d{v} = (aca {v}III{a)J=2},
is

ad acen cy op.	 a E B(V,V), a(v) = {uEVI3acc{v},V a}={u,v}EP2(V)}.

Other operators a.e possible and may be included later. Each
one of these operators can be used in place of (P to characterize
graphs of a specific type. In particular, pseudographs can be
defined in terms of the star operator, multigraphs in terms of a
or S, and graphs by the adjacency operator. As an example, we
consider only the last part of this statement. Note that a
satisfies

(i) a E B(V,V), (ii) v e a{v}, VV E V

(iii) u E a.{v} if and only if v E of{u}, d u,v E V.

Now let V be any set and a any Boolean mapping with these
properties. Then G = (V,A,(D) with

A={{u,v} E P	
I

2 (V)	 u E a{v}}
'

4) E B(A,V), (D{a} _ (u,v) if a = {u,v},	 d a E A

J is a well-defined graph with a as its adjacency operator. We
call (V,a) the node form representation of G.

The development presented so far is easily carried over to
directed graphs. A directed pseudo rash shall be a quadruple

a
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G - (V,A,m+ ,(P ) consisting of a node set V, an .arc set A, and
a positive ana negative incidence operator

1)+9 (D_ E B(A,V)-, ^D+ {a) , Q, _{a} E P  (V) , V a r A.

It is convenient to consider also the combined operator

,: c B(A,V), ^{a) - m+ {a }v 1^_{a},	 V  c A

which permits the definition of the terms directed multigranh and
directed graph (digraph) as in the undirected case. Then as be-

fore we can introduce the following graph operators:

star op.
E

boundary op.

co-boundary op.

adjacency op.

Q+gyp_ E B(V,A), o + {v} = {aEAIVEI^+{a}}

a+ ,a_ E L(A,V), a + {a} - ^4{a}

d+ ,d_ e L(V,A), S + {v} - Q+ {v}

(4, a_ E B(V,V), a + {v} = {uEVI] aca+{v},u=(D;{ a }},

In each case, it is useful to introduce also the combined operators

a= C+ U Q_, a- a+oa_, a- a+oa_, a- a+ L) a_.

Together, the positive and negative version of any one of these

operators allow the characterization of a specific type of graph.
In particular, as in our undirected example, we can introduce a

node form representation (V,a+ ,a_) of a digraph.

3. Summary of FGRAAL

In this section we present a brief overview of FGRAAL, that
is, of the GRAAL version defined as an extension of FORTP-A-N. Rules

of FORTRAN not affected by the introduction of FGRAAL are not re-

peated here.

A. Declarations

Set declaration	 SET X,Y,...

List declaration	 'type' STAQUE L,K,..,

Property declaration	 'type' PROPERTY R,T,...

Graph declaration	 GRAPH G('module'),...

In FGRAAL, sets constitute a new data type, and 'type' stands
either for any one of the existing FORTRAN data types or for SET.

An atomic set consists of exactly one element, and any set is
either empty or a union of atomic sets. A list is a doubly-open

linked list structure which may be used as a stack or a queue. A
property may be associated with any atomic set. The property for

a particular atomic set exists and may be referenced only after

it has been assigned a value; otherwise, a default value is
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'	 returned. Grapt.s represent mpecific data structures together
with certain operations for mani pulating them. The graph declara-
tion identifies the tyre of data structure used and the family of

'	 graph operators available with it. The language is modular, that
is, only some of the possible graph operators are usable with any
specific graph. Four nodules are presently defined in the language
representing directed and undirected pseudographs, as well as

'	 directed and undirected graphs in node form..

B. Set Operators and Functions

Set constant: b or .EMPTY., the empty set.
Set operators, in increasing order of precedence:

I	 .D. difference, U. union, S. symmetric sum,
.I. intersection.

Set relational operators: .EQ. equal relation, .NE. not equal
l	 relation, .IN. inclusion relation.

CREATE(0)	 Creates atomic set with next sequence number
CREATE(P1: V1,...)	 Returns atomic set with matching

"property: value" pairs or creates it if
nonexistent

ATOM(I)	 Returns atomic set with sequence number I
or eripty set if nonexistent

ELT(I,S)	 Returns atomic set located in ith position
within the set S

INDEX(A,S)	 Returns position number of atomic set A in S
SIZES)	 Cardinality of S
PARITY(S)	 TRUE or FALSE if cardinality of S is odd or

even, respectively
CO:TNT(0)	 Maximal sequence number used
COUNT(A)	 Sequence number of atomic set A
SUBSET(X,E)	 Returns set of all elements satisfying logi-

cal expression E
CHECK(P,A)	 TRUE if property P has a value for the

atomic set A, otherwise FALSE

Each atomic set carries a sequence number which is assigned to it
at the time of its creation. A set is a union of atomic sets
ordered in ascentiint order of their sequence number, thereby
allowing for ah efficient manipulation of sets. All sequence
numbers assigned to atomic sets are retained in an element se-
quence which serves the dual purpose of cataloging the existing
atomic sets and of providing the linkage between atomic sets and
the properties assigned to them.

C. List Operators and Functions

List constant: # or .NIL., the empty list.
List operator: L : K : M or L .ET. K .ET. ri

Standard concatenation of lists of same type
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1 FIRST(L), DFIRST(L)
LAST (L) , DLAST(I.)

D. Grmh Functions

NODES(G) 9 ARCS (G)
INC, PINC, NINC
STAR, PSTAR, NSTAR
BD, PBD, NBD
COB, PCOB, NCOB
ADJ, PADJ, NADJ

The first or last element is returned
and also deleted if D is present.

Return node or arc set of G
Incidence operators
Star operators
Boundary operators
Co-boundary operators
Adjacency operators

The P-(positive) and N-(negative) operators are only available
'	 for directed graphs. For graphs in node form only the adjacency

operators are defined. All graph functions are of type SET.

E. Granh Construction Statements

ASSIGN G,A The atomic set A is assigned to G as a node.
ASSIGN G,A-H The atomic sets A,B are assigned to G as a pair

of adjacent nodes.
ASSIGN G,A-B,C The atomic sets A,B,C are assigned to C a	 arc C

with nodes A and B.
DETACH G Delete all nodes and arcs from G.
DETACH G,S The elements of the set S are deleted frcm G.

Nodes are deleted together witt. all incident
arcs.

DETACH G,S-T Delete all arcs connecting the sets S and T of
nodes of G.

F. Proper t_ • Functions

The statement P(A) = E assigns to the atomic set A as value
of the property P the value of the expression E. When P(A) is
referenced, e.g., as part of an expression, its current value is
retrieved.

G. Remove Statement

REMOVE S,T,...,P,Q,...,PP(X),PQ(Y),...

The remove statement may have the following arguments:
(a) Sets: All atomic sets contained in these sets are re-

moved from the universal sequence.
(b) Property names: The property is removed from all atomic

sets to which it had been assigned.
(c) Property names followed by a set in parentheses: The

property is removed from the atomic sets contained in the
specified set.

R-
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N. Iterative Statements

DO K FORALL X .IN. S
DO K WEE I I.F. F

Both statements cause the repetitive execution of all subsequent
statements including that with label K. In the first case. X is
set equal to the atomic sets in S in succession, and in the second,
the iteration continues until the logical expression E is FALSE.
The DO range is skipped completely if S is empty or E is initially
FAL SL.

4. Examples

The FGRAAL subroutines presented in this section are intended
to illustrate sore features of the language and to show how the
set theoretical structure introduces a certain novelty into the
design of graph algorithms. In the interest of clarity, no parti-
cular attempt was made to optimize the programs. The choice of
algorithms was influenced by the topic of this Symposium. The
first two subroutines determine the strong components of a directed
graph G in node form, the third constructs the corresponding
acyclic condensation graph CC, and the fourth provides a topologi-
cal sort of the node3 of G. With  maximal transversal algorithm
--excluded for space reasons--this completes a set of programs
for partitioning a large sparse matrix. Since in these programs
G is always in node form, only the adjacency operators are used.
As an example involving some other graph operatorF, this section
concludes with a routine for constructing a spanning tree of a
pseudograph.

The following subroutine finds the strong component of G
defined by the node V and returns the node set of this component
in the set X. The approach used here appears to be new; each
node is accessed at best twice.

SUBROUTINE STCOMP(G,V,X)
G RAP H G
SET V,X,P,PT,N,NT,SP,SN

C X NODES OF THE COMPONENT FOUND SO FAR
C P	 POS. REACHABILI7'Y SET: NODES REACHED FROM
C N NEG. REACHABILITY SET: NODES FROM WH10E1 X
C PT SUBSET OF P FOR WHICH 'PADJ' HAS NOT HEN
C NT SUBSET OF N FOR WHICH 'NADJ' HAS NOT BEEN

X V
I	 I
PT = PAI)J (G, V)
NT	 NADJ(G,V)
P PT
NNT
DO 50 WHILE (PT .NE. &) .AND. (NT .NE. &)

X
IS REACHABLE
COMPUTED
COMPUTED
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C CHECK FOR INTERSECTION OF RE.'ACHABILITY SETS
SP	 PT .I. NT
IF (SP .NE. b) GO TO 30

C NO, ENLARGE ALTERNATIVELY THE TWO RFACHABILITY SETS
GO TO (10,20) 9 I

C POSITIVE REACIIABILITY SET
10	 PT = I'ADJ(G,PT) D. P

P	 P U. PT
2

GO TO 50
C NEGATIVE. REACIIABILITY SET

20	 NT a N A DJ (G, 21T) . D. N
N	 N .U. 14T
I a 1
GO TO 50

YES, ENLARGE COMPONENT
30	 SN = SP

C ENLARGE COMPONENT BY TRAVERSING BACK FROM INTERSECTION
DO 40 WHILE. (SP .NE. 6) .OR. (SN .NE. &)
X	 X . U. SP . U. SN
SP	 P I. NADJ(G,SP) D. X

40	 SN = N . I. PADJ !G, SN) . D. X
C REDEFINE SETS P, PT, N AND NT

SP - P I. X
SN = N .I. X
PT - (PT D. SP) U. (PADJ(G,SN) D. (P U. X))
NT - (NT D. SN) U. (NADJ(G,SP) D. (N U. X))
P = (P D. SP) U. PT
N - (N D. SN) U. NT

50	 CONTINUE
RETURN
END

The previous subroutine can be called repeatedly to find all
strong components of G. A more optimal combined program is
possible.

SUBROUTINE: ALLSTC (G,L)
GRAPH G
SET STAQUE L
SET N,X,V
L	 #

N = NODES(G)
DO 10 WHILE N .NE. &

C GET A NODE
V - ELT(1,N)

C GET THE CORRESPONDING COMPONENT
CAI L STCOMP (G, V, X)

I	 L = L : X
C SUBTRACT THE NODES FROM STARTING SET
10	 N = N D. X

i
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RETURN
END

From the list L produced here the next program now constructs
the acyclic condensation of the graph G.

SUBROUTINE CONDS(G,L,CG,REF)
GRAPH G, CG
SET STAQUE L
SET PROPERTY REF
SET S,X

C LOOP FOR THE NODES OF CG
DO 10 WIiILE L .NE. #

(	 C CREATE NODE
1	 S = DFIRST(L)

X = CREATE(REF : S)
ASSIGN CG,X
S = ADJ(G,S)

C LOOP TO CREATE THE ADJACENCY
DO 10 FORALL T .IN. L
IF (S.I.T .NIA:. &) ASSIGN CG,X - CREATE(REF:T)

10	 COM 1NUE
RETURN
END

Finally, the nodes of CG are sorted into the set array A such
that the existence of a directed path from node X = A(I) to nude
Y - A(J) implies that I < J.

SUBROUTINE TOPSRT (CG,A,M)
GRA.PII CG
SET A
DIMENSION A(M)

C R SET TO COLLECT THE NODES TO BE SORTED
C T SET TO COLLECT THE ALREADY SORTED NODES

SET R, T, X
M - 0
T &
R = SUBSET(X,X .IN. NODES (CG) .AND. NADJ(CG,X).EQ.&)

C LOOP TO PROCESS ELEMENTS OF R
DO 10 WHILE R .NE. &
X = ELT(1,R)

C ARE THE PREDECESSORS OF X ALREADY SORTED
IF (.NOT. (NADJ(CG,X) .IN. T)) GO TO 10

C YES, PLACE X IN THE ARRAY A AND T
M = M + 1
A (M) = X

I	 T = T U. X
C AND ADD ITS POSITIVE ADJACENCY NODES TO R FOR PROCESSING

R = R .U. PADJ(CG,X)

i I
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C NO, DELETE X FROM R TO BE ADDED BACK LATER
10	 R z R . D. X

RETURN
END

1he following subroutine is intended to show the use of some
of the other graph operators. It generates a directed spanning
tree TREE with root U for a connected (directed or undire^_ti:d)
pseudograph.

SUBROUTINE SPTREF. (G,U,TRF.E)
GRAPH G, TREE
SET U,S,T,X,Y,W,A

C INITIALI?.E TREE AND S WITH U
ASSIGN TREE, U
S = U
T	 COL' (G, U)

C LOOP TO PROCESS OUTGOING ARCS FROM NODE SET S
DO 20 4.1I I I.E T . NE. &
DO 10 FOP.ALL A . 1I4 . i

C GET END NODE WI1ICII IS NOT IN S
W - BD(G,A)
Y = W .D. S

C ADD IT TO S AND ASSIGN IT TO TREE
IF (Y .EQ. &) GO TO 10
S = S U. Y
X = W .I). Y
ASSIGN TREE, X-Y, A

10	 CONTINUE
C GET NEW SET OF OUTGOING ARCS
20	 T = COB(G,S)

RETU RN
END
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